

### **Features**

Single-Supply Operation from +2.1V ~ +5.5V

• Rail-to-Rail Input / Output

Gain-Bandwidth Product: 1MHz (Typ)

Low Input Bias Current: 1pA (Typ)

• Low Offset Voltage: Channel A: ±3.5mV (Max)

Channel B: +5mV(Typ)

Quiescent Current: 40µA per Amplifier (Typ)

• Operating Temperature: -40°C ~ +125°C

Embedded RF Anti-EMI Filter

• Small Package:

GS8358 Available in SOP-8, MSOP-8 Packages

## **General Description**

The GS8358 is a single supply, low power CMOS dual operational amplifier; these amplifiers offer bandwidth of 1MHz, rail-to-rail inputs and outputs, and single-supply operation from 2.1V to 5.5V. Typical low quiescent supply current of 80µA in dual operational amplifiers within one chip and very low input bias current of 1pA make the devices an ideal choice for low offset, low power consumption and high impedance applications such as smoke detectors, photodiode amplifiers, and other sensors. The GS8358 is available in SOP8 and MSOP8 packages. The extended temperature range of -40°C to +125°C over all supply voltages offers additional design flexibility.

## **Applications**

- ASIC Input or Output Amplifier
- Sensor Interface
- Medical Communication
- Smoke Detectors

March 2020-REV VO

- Audio Output
- Piezoelectric Transducer Amplifier
- Medical Instrumentation
- Portable Systems

# **Pin Configuration**

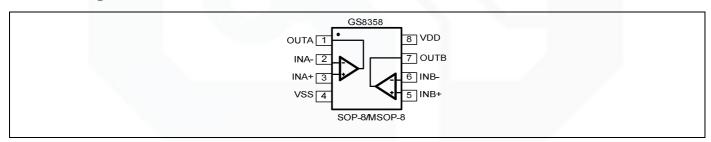



Figure 1. Pin Assignment Diagram





## **Absolute Maximum Ratings**

| Condition                                         | Min      | Мах                   |  |  |  |
|---------------------------------------------------|----------|-----------------------|--|--|--|
| Power Supply Voltage (V <sub>DD</sub> to Vss)     | -0.5V    | +7.5V                 |  |  |  |
| Analog Input Voltage (IN+ or IN-)                 | Vss-0.5V | V <sub>DD</sub> +0.5V |  |  |  |
| PDB Input Voltage                                 | Vss-0.5V | +7V                   |  |  |  |
| Operating Temperature Range                       | -40°C    | +125°C                |  |  |  |
| Junction Temperature                              | +16      | 0°C                   |  |  |  |
| Storage Temperature Range                         | -55°C    | +150°C                |  |  |  |
| Lead Temperature (soldering, 10sec)               | +26      | 0°C                   |  |  |  |
| Package Thermal Resistance (T <sub>A</sub> =+25℃) |          |                       |  |  |  |
| SOP-8, θ <sub>JA</sub>                            | 125°     | 125°C/W               |  |  |  |
| MSOP-8, θ <sub>JA</sub>                           | 216°     | 216°C/W               |  |  |  |
| ESD Susceptibility                                |          |                       |  |  |  |
| НВМ                                               | 6k       | 6KV                   |  |  |  |
| MM                                                | 30       | 300V                  |  |  |  |

**Note:** Stress greater than those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions outside those indicated in the operational sections of this specification are not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

# **Package/Ordering Information**

| MODEL       | CHANNEL   | ORDER NUMBER | PACKAGE<br>DESCRIPTION | PACKAGE<br>OPTION | MARKING<br>INFORMATION |
|-------------|-----------|--------------|------------------------|-------------------|------------------------|
| GS8358 Dual | GS8358-SR | SOP-8        | Tape and Reel,4000     | GS8358            |                        |
|             | GS8358-MR | MSOP-8       | Tape and Reel,3000     | GS8358            |                        |



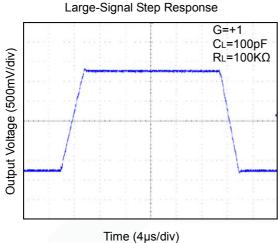


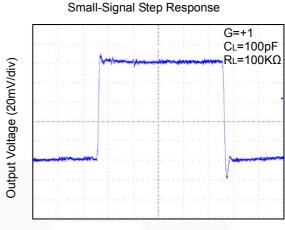


## **Electrical Characteristics**

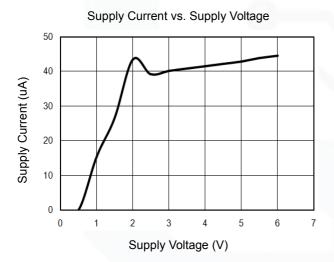
(At  $V_S = +5V$ ,  $R_L = 100k\Omega$  connected to  $V_S/2$ , and  $V_{OUT} = V_S/2$ , unless otherwise noted.)

|                                |                          |                                                        | GS8358       |                          |              |                |         |  |
|--------------------------------|--------------------------|--------------------------------------------------------|--------------|--------------------------|--------------|----------------|---------|--|
| PARAMETER                      | SYMBOL                   | CONDITIONS                                             | TYP          | MIN/MAX OVER TEMPERATURE |              |                |         |  |
|                                |                          |                                                        | +25℃         | +25℃                     | -40℃ to +85℃ | UNITS          | MIN/MAX |  |
| INPUT CHARACTERISTICS          |                          |                                                        | •            |                          |              |                | •       |  |
|                                |                          | V <sub>CM</sub> = V <sub>S</sub> /2 , Channel A        | ±0.4         | ±3.5                     | ±5.6         | mV             | MAX     |  |
| Input Offset Voltage           | Vos                      | V <sub>CM</sub> = V <sub>S</sub> /2 , Channel B        | +5           |                          |              | mV             | TYP     |  |
| Input Bias Current             | I <sub>B</sub>           |                                                        | 1            |                          |              | pA             | TYP     |  |
| Input Offset Current           | I <sub>os</sub>          |                                                        | 1            |                          |              | pA             | TYP     |  |
| Common-Mode Voltage Range      | V <sub>CM</sub>          | V <sub>S</sub> = 5.5V                                  | -0.1 to +5.6 |                          |              | ٧              | TYP     |  |
| Common-Mode Rejection Ratio    |                          | $V_S = 5.5V$ , $V_{CM} = -0.1V$ to 4V                  | 70           | 62                       | 62           | dB             | dB MIN  |  |
|                                | CMRR                     | V <sub>S</sub> = 5.5V, V <sub>CM</sub> = -0.1V to 5.6V | 68           | 56                       | 55           |                |         |  |
| 0 1 1/1 0:                     |                          | $R_L = 5k\Omega$ , $V_O = +0.1V$ to +4.9V              | 80           | 70                       | 70           | dB             | dB MIN  |  |
| Open-Loop Voltage Gain         | A <sub>OL</sub>          | $R_L = 10k\Omega$ , $V_O = +0.1V$ to +4.9V             | 100          | 94                       | 85           |                |         |  |
| Input Offset Voltage Drift     | $\Delta V_{OS}/\Delta_T$ |                                                        | 2.7          |                          |              | μV/°C          | TYP     |  |
| OUTPUT CHARACTERISTICS         |                          |                                                        |              |                          |              |                | •       |  |
|                                | V <sub>OH</sub>          | R <sub>L</sub> = 100kΩ                                 | 4.997        | 4.990                    | 4.980        | V              | MIN     |  |
| Output Voltage Swing from Rail | V <sub>OL</sub>          | R <sub>L</sub> = 100kΩ                                 | 3            | 10                       | 20           | mV             | MAX     |  |
|                                | V <sub>OH</sub>          | $R_L = 10k\Omega$                                      | 4.992        | 4.970                    | 4.960        | ٧              | MIN     |  |
|                                | V <sub>OL</sub>          | $R_L = 10k\Omega$                                      | 8            | 30                       | 40           | mV             | MAX     |  |
|                                | I <sub>SOURCE</sub>      | D 400 L 1/ /0                                          | 84           | 60                       | 45           |                | MIN     |  |
| Output Current                 | I <sub>SINK</sub>        | $R_L = 10\Omega$ to $V_S/2$                            | 75           | 60                       | 45           | mA             |         |  |
| POWER SUPPLY                   |                          |                                                        |              |                          |              |                | •       |  |
| 71                             |                          |                                                        |              | 2.1                      | 2.5          | V              | MIN     |  |
| Operating Voltage Range        |                          |                                                        |              | 5.5                      | 5.5          | ٧              | MAX     |  |
| Power Supply Rejection Ratio   | PSRR                     | $V_S$ = +2.5V to +5.5V, $V_{CM}$ = +0.5V               | 82           | 60                       | 58           | dB             | MIN     |  |
| Quiescent Current / Amplifier  | ΙQ                       |                                                        | 40           | 60                       | 80           | μA             | MAX     |  |
| DYNAMIC PERFORMANCE (CL        | = 100pF)                 |                                                        |              |                          |              |                | •       |  |
| Gain-Bandwidth Product         | GBP                      |                                                        | 1            |                          |              | MHz            | TYP     |  |
| Slew Rate                      | SR                       | G = +1, 2V Output Step                                 | 0.6          |                          |              | V/µs           | TYP     |  |
| Settling Time to 0.1%          | ts                       | G = +1, 2V Output Step                                 | 5            |                          |              | μs             | TYP     |  |
| Overload Recovery Time         |                          | V <sub>IN</sub> ·Gain = V <sub>S</sub>                 | 2.6          |                          |              | μs             | TYP     |  |
| NOISE PERFORMANCE              | •                        |                                                        |              | •                        |              | -              | •       |  |
| Voltago Noigo Dansitu          |                          | f = 1kHz                                               | 27           |                          |              | $nV/\sqrt{Hz}$ | TYP     |  |
| Voltage Noise Density          | e <sub>n</sub>           | f = 10kHz                                              | 20           |                          |              | $nV/\sqrt{Hz}$ | TYP     |  |

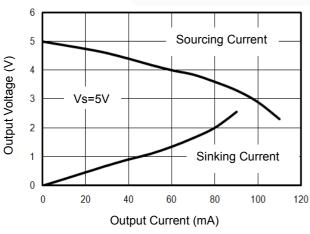


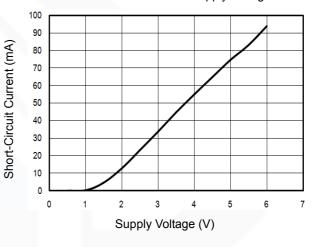




## **Typical Performance characteristics**

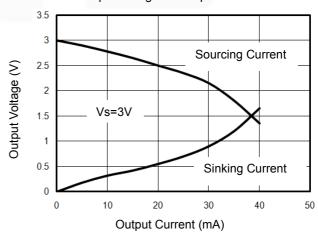
At  $T_A$ =+25°C,  $V_S$ =+5V, and  $R_L$ =100K $\Omega$  connected to  $V_S$ /2, unless otherwise noted.







Time (2µs/div)

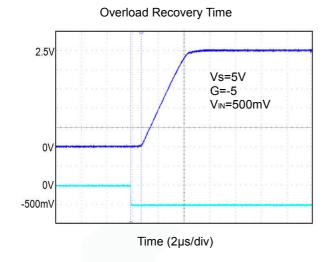


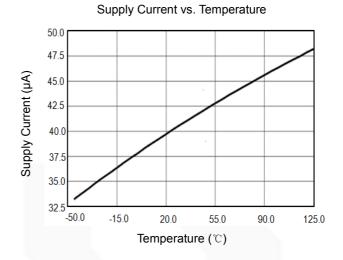

Output Voltage vs. Output Current

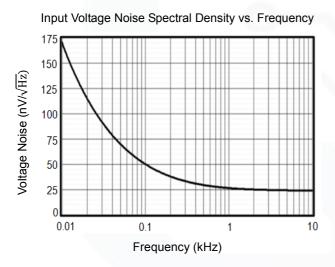


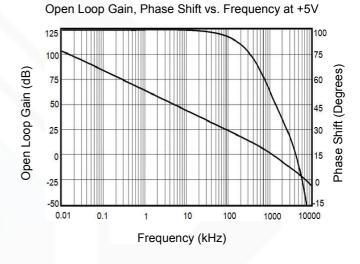
Short-Circuit Current vs. Supply Voltage

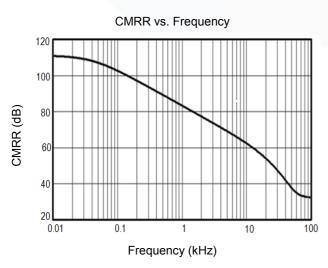


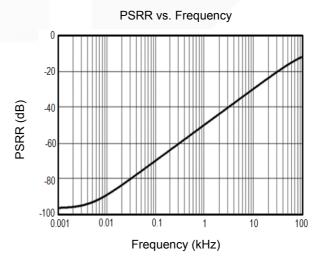

Output Voltage vs. Output Current





## **Typical Performance characteristics**


At  $T_A$ =+25°C,  $V_S$ =+5V, and  $R_L$ =100K $\Omega$  connected to  $V_S$ /2, unless otherwise noted.


















## **Application Note**

#### Size

GS8358 op amp is unity-gain stable and suitable for a wide range of general-purpose applications. The small footprints of the GS8358 packages save space on printed circuit boards and enable the design of smaller electronic products.

#### **Power Supply Bypassing and Board Layout**

GS8358 operates from a single 2.1V to 5.5V supply or dual  $\pm 1.05$ V to  $\pm 2.75$ V supplies. For best performance, a  $0.1\mu$ F ceramic capacitor should be placed close to the  $V_{DD}$  pin in single supply operation. For dual supply operation, both  $V_{DD}$  and  $V_{SS}$  supplies should be bypassed to ground with separate  $0.1\mu$ F ceramic capacitors.

#### **Low Supply Current**

The low supply current (typical  $40\mu$ A per channel) of GS8358 will help to maximize battery life. They are ideal for battery powered systems.

#### **Operating Voltage**

GS8358 operates under wide input supply voltage (2.1V to 5.5V). In addition, all temperature specifications apply from -40 °C to +125 °C. Most behavior remains unchanged throughout the full operating voltage range. These guarantees ensure operation throughout the single Li-Ion battery lifetime.

#### Rail-to-Rail Input

The input common-mode range of GS8358 extends 100mV beyond the supply rails ( $V_{SS}$ -0.1V to  $V_{DD}$ +0.1V). This is achieved by using complementary input stage. For normal operation, inputs should be limited to this range.

#### Rail-to-Rail Output

Rail-to-Rail output swing provides maximum possible dynamic range at the output. This is particularly important when operating in low supply voltages. The output voltage of GS8358 can typically swing to less than 5mV from supply rail in light resistive loads (> $100k\Omega$ ), and 30mV of supply rail in moderate resistive loads ( $10k\Omega$ ).

#### **Capacitive Load Tolerance**

The GS8358 is optimized for bandwidth and speed, not for driving capacitive loads. Output capacitance will create apole in the amplifier's feedback path, leading to excessive peaking and potential oscillation. If dealing with load capacitance is a requirement of the application, the two strategies to consider are (1) using a small resistor in series with the amplifier's output and the load capacitance and (2) reducing the bandwidth of the amplifier's feedback loop by increasing the overall noise gain. Figure 2. shows a unity gain follower using the series resistor strategy. The resistor isolates the output from the capacitance and, more importantly, creates a zero in the feedback path that compensates for the pole created by the output capacitance.

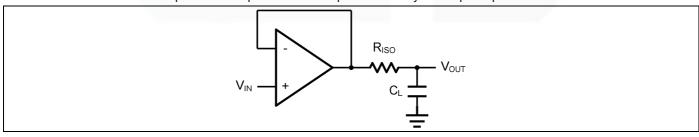



Figure 2. Indirectly Driving a Capacitive Load Using Isolation Resistor







The bigger the  $R_{ISO}$  resistor value, the more stable  $V_{OUT}$  will be. However, if there is a resistive load  $R_L$  in parallel with the capacitive load, a voltage divider (proportional to  $R_{ISO}/R_L$ ) is formed, this will result in a gain error.

The circuit in Figure 3 is an improvement to the one in Figure 2.  $R_F$  provides the DC accuracy by feed-forward the  $V_{IN}$  to  $R_L$ .  $C_F$  and  $R_{ISO}$  serve to counteract the loss of phase margin by feeding the high frequency component of the output signal back to the amplifier's inverting input, thereby preserving the phase margin in the overall feedback loop. Capacitive drive can be increased by increasing the value of  $C_F$ . This in turn will slow down the pulse response.

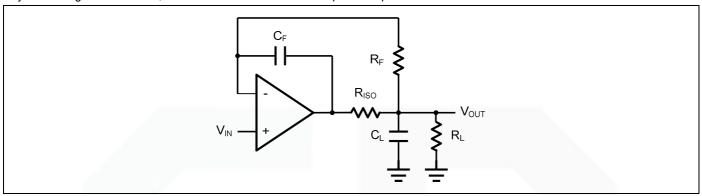



Figure 3. Indirectly Driving a Capacitive Load with DC Accuracy





## **Typical Application Circuits**

### **Differential amplifier**

The differential amplifier allows the subtraction of two input voltages or cancellation of a signal common the two inputs. It is useful as a computational amplifier in making a differential to single-end conversion or in rejecting a common mode signal. Figure 4. shown the differential amplifier using GS8358.

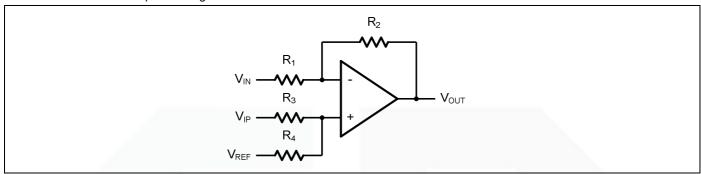



Figure 4. Differential Amplifier

$$V_{\text{OUT}} = (\frac{R_1 + R_2}{R_3 + R_4}) \frac{R_4}{R_1} V_{\text{IN}} - \frac{R_2}{R_1} V_{\text{IP}} + (\frac{R_1 + R_2}{R_3 + R_4}) \frac{R_3}{R_1} V_{\text{REF}}$$

If the resistor ratios are equal (i.e. R<sub>1</sub>=R<sub>3</sub> and R<sub>2</sub>=R<sub>4</sub>), then

$$V_{\text{OUT}} = \frac{R_2}{R_1} (V_{\text{IP}} - V_{\text{IN}}) + V_{\text{REF}}$$

#### **Low Pass Active Filter**

The low pass active filter is shown in Figure 5. The DC gain is defined by  $-R_2/R_1$ . The filter has a -20dB/decade roll-off after its corner frequency  $f_C=1/(2\pi R_3C_1)$ .

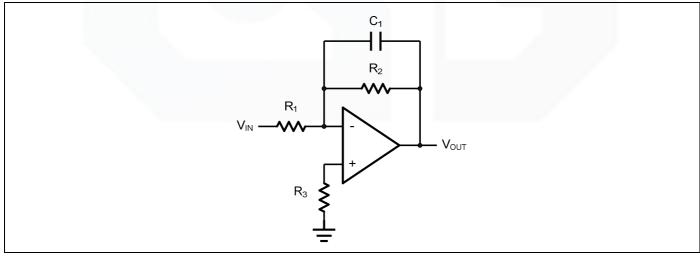



Figure 5. Low Pass Active Filter





### **Instrumentation Amplifier**

The triple GS8358 can be used to build a three-op-amp instrumentation amplifier as shown in Figure 6. The amplifier in Figure 6 is a high input impedance differential amplifier with gain of R2/R1. The two differential voltage followers assure the high input impedance of the amplifier.

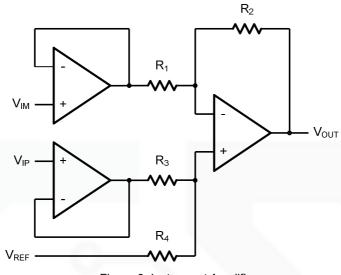
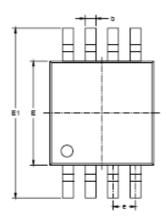
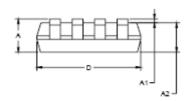



Figure 6. Instrument Amplifier



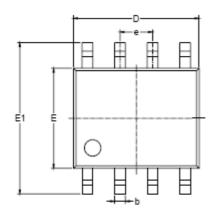


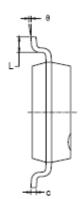


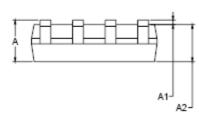



# **Package Information**

## MSOP-8




| Symbol | Dimensions<br>In Millimeters |       | Dimensions<br>In Inches |       |  |
|--------|------------------------------|-------|-------------------------|-------|--|
|        | MIN                          | MAX   | MIN                     | MAX   |  |
| Α      | 0.820                        | 1.100 | 0.032                   | 0.043 |  |
| A1     | 0.020                        | 0.150 | 0.001                   | 0.008 |  |
| A2     | 0.750                        | 0.950 | 0.030                   | 0.037 |  |
| b      | 0.250                        | 0.380 | 0.010                   | 0.015 |  |
| С      | 0.090                        | 0.230 | 0.004                   | 0.009 |  |
| D      | 2.900                        | 3.100 | 0.114                   | 0.122 |  |
| E      | 2.900                        | 3.100 | 0.114                   | 0.122 |  |
| E1     | 4.750                        | 5.050 | 0.187                   | 0.199 |  |
| e      | 0.650 BSC                    |       | 0.026 BSC               |       |  |
| L      | 0.400                        | 0.800 | 0.016                   | 0.031 |  |
| θ      | 0°                           | 6°    | 0°                      | 6°    |  |
|        |                              |       |                         |       |  |

## SOP-8







| Symbol | Dimensions<br>In Millimeters |       | Dimensions<br>In Inches |       |  |
|--------|------------------------------|-------|-------------------------|-------|--|
|        | MIN                          | MAX   | MIN                     | MAX   |  |
| A      | 1.350                        | 1.750 | 0.053                   | 0.069 |  |
| A1     | 0.100                        | 0.250 | 0.004                   | 0.010 |  |
| A2     | 1.350                        | 1.550 | 0.053                   | 0.061 |  |
| b      | 0.330                        | 0.510 | 0.013                   | 0.020 |  |
| С      | 0.170                        | 0.250 | 0.006                   | 0.010 |  |
| D      | 4.700                        | 5.100 | 0.185                   | 0.200 |  |
| E      | 3.800                        | 4.000 | 0.150                   | 0.157 |  |
| E1     | 5.800                        | 6.200 | 0.228                   | 0.244 |  |
| e      | 1.27 BSC                     |       | 0.050 BSC               |       |  |
| L      | 0.400                        | 1.270 | 0.016                   | 0.050 |  |
| е      | 0°                           | 8°    | 0°                      | 8°    |  |